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ABSTRACT 
The effect of the Sun’s gravity on the distribution of Dark Matter (DM) 

particles in the vicinity of the Earth is considered. The event rate in a cryogenic 
detector is found and the annual modulation of the signal due to this effect is 
compared to the annual modulation due to the reiative velocities of the Sun and 
Earth. The effect is order 1% and probably too small to be seen experimentally. 
The effect of this distribution function on the capture rate of DM particles into 
the Earth is also considered. The rate could be suppressed for DM particles not 
well matched in mass to common elements in the Earth. Finally, the density of 
DM particles in bound orbits around the Sun is estimated and, contrary to earlier 
work, no way of generating an enhancement over “equilibrium” density is found. 
The inclusion of an “equilibrium” density of bound particles has negligible effect 
on direct detection, but removes the capture rate suppression. 
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I. INTRODUCTION 

It is possible that the dark matter (DM) which comprises the bulk of the 

material in our galaxy consists of some, as yet undiscovered, elementary particle. 

If so, there should be a substantial density of these particles in the neighborhood 

of the Earth and it may be possible to detect their presence either directly, by 

detecting the small, O(keV), energy deposited by an elastic scatter of a DM 

particle with a nucleus in a cryogenic laboratory device”’ or indirectly, though 

detection of DM particle/anti-particle annihilation products. The most promising 

schemes of the latter type use the density enhancement caused by capture, over 

the age of the solar system, of DM particles into the body of the Earth3’4 or 

Sun.5’6 

The actual signal for both direct and indirect detection schemes depends 

crucially on the phase space density f of DM particles near the Earth. This 

function depends upon the average density of DM particles in the universe and 

on details of galaxy evolution, both of which are poorly known. Nonetheless, 

with the use of several assumptions, interesting limits have already been placed 

on several particle DM candidates, and many new and more sensitive experiments 

are being planned. In calculating event signal rates, previous authors ‘J have 

taken for f a Maxwellian distribution of velocities parameterized by a velocity 

dispersion (u”) times a constant average halo DM density pc = 0(.4GeV/cm3). 

The Earth and Sun move through this cloud of particles with velocities V( w 30 

km/set, and vI % 235 km/see, and the distribution should have a cutoff at a 

galactic escape velocity v+. What has not been previously considered is the fact 

that to get to the Earth, the cloud of particles must fall through the gravitational 

field of the Sun. Since the escape velocity from the Sun at the Earth’s orbit is 

ves = 42 km/set, apart from the Earth’s motion around the Sun, no DM particle 

from this galactic cloud will be seen on Earth moving slower than this.g There 
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may, in addition, be particles which have in some manner been captured into 

bound orbits around the Sun and which are slowly moving in the vicinity of 

the Earth, but the phase space density of these particles must be considered 

separately. Particles from the unbound cloud will also be focused by the Sun 

before reaching the Earth and the density of DM particles enhanced. Finally, the 

density and velocity distribution of particles from the unbound cloud will vary 

at different times of the year and in different directions in the sky. For example, 

when the Earth is in the “wake” of the Sun, the density will be higher than 

when the Earth is in front of the Sun. In this paper we consider the effect the 

Sun’s gravity has on the distribution function, and the consequent effects this 

has on the direct and indirect detection of dark matter particles on Earth. Since 

ut/ (v’) is small, we expect the effect to be small in most cases. 

In Sec. II we discuss the phase space density in the Earth frame for particles 

in a Maxwellian distribution under the influence of the solar potential. We also 

discuss the event rate in a cryogenic detector from this distribution. In Sec. III 

we apply the formulas of Sec. II to example detectors at various times of year 

and find an O(1 - 2%) focusing modulation of the event rate orthogonal to the 

already known O(lO%) relative velocity modulation. In Sec. IV we consider the 

effect of our distribution function on the capture rate of DM particles into the 

body of the Earth and find that for particles with masses not closely matched to 

abundant elements in the Earth no capture is possible. For DM particles with 

masses between 8 and 90 GeV substantial mismatch does not occur, however, 

and in addition, a new paper by Gould shows that particles in bound orbits 

compensate this capture suppression. In Sec. V we consider the trickier problem 

of the density of DM particles in bound orbits. The “equilibrium density” is 

discussed and several capture scenarios considered, but in all cases no great 

enhancement over the equilibrium density is found. We conclude that the bound 

particle density is at or near equilibrium density. The effects of an example bound 

particle density on direct and indirect detection are touched upon. Sec. VI sums 

2 



up the paper. 

II. PXASE SPACE DENSITY 

Fig. 1 shows schematically the relationship between the plane of the ecliptic, 

the velocity of the Sun around the galactic center and various times of year. The 

Sun’s and Earth’s velocities are most closely aligned in June and most closely 

anti-aligned in December. The Earth is most closely in the wake of the Sun 

in March and forward of the Sun in September. The angle between the Sun’s 

velocity around the galactic center and the plane of the ecliptic is a: = 59.6O, 

but if we include the Sun’s motion toward the solar apex of 16.5 km/set” and 

take 220 km/set as the velocity of the local group of stars around the galactic 

center then the total solar velocity is 230 km/set and the angle is a = 60.2O. In 

referring to March, June, etc. we are actually referring to the one day each year 

where the above is true. Leaving out motion towards the solar apex gives dates 

approximately 14 days before the the solstices and equinoxes, while including 

the motion gives dates approximately 19 days before the solstices and equinoxes; 

that is 2 June, etc.. Uncertainty in the Sun’s velocity with respect to the halo 

translates into an uncertainty in these dates of 2: +1.3 days. 

In what follows, we use spherical coordinates with the Sun at the origin and 

the positive .z axis on the line from the Sun to the Earth ( see Fig. 1). The 

Sun’s motion is in direction (0,4), the Earth’s motion is in direction (X’,Y’) 

and we evaluate the distribution function in direction (A, u), and at velocity 

u. For the four times of year mentioned the values of (8,4), (X,V) are: June 

(!j,y),(;, T - Q); December (z,?), (F, 5 + a); March (s - cl,?), ($,A) and 

September (a,?),(;,?~). The formula for f we will be using requires 4 = F 

always. We consider a cloud of DM particles which, far from the Sun, has a 

uniform density po x 0.4GeV/cm 311 and an isotropic Maxwellian distribution of 

velocities parameterized by h = m czz (156kn/sec)-‘.” In actuality, the 

halo of the Galaxy is probably neither Maxwellian, nor isotropic1”r3 but it is 



not clear what approximation is better. The cutoff velocity v,+ = 640 km/see is 

not well known since it depends upon the unknown extent of the galactic halo 

and we are using here an estimate by Caldwell and Ostriker. I4 We denote the 

Earth’s velocity with respect to the Sun as V, and the Sun’s velocity with respect 

to the cloud as u,. The velocity distribution at a distance a(g from the Sun, in 

the Sun’s rest frame, was found by Danby and Camm” in 1957, and applied by 

Danby and Bray16 in 1967. 

/(v, 0,4,X, u) = (2x)-3/2p0h3 exp(+F)0(P) (1) 

where 

F = uz + J2 +2v JzZ + J(GMo/ae)cosb’ - JuZcosX 
d 8 

J2 + (GMo/ae) - JucosB (2) 

and J2 = v2 - 2GM,3/ae,, 2 = v(cosXcos0 - sinXsinBsinv), A40 is the mass 

of the Sun and a@ is the distance from the Sun to the Earth. In getting Eq. (2) 

from Ref. (15) we followed the method of Ref. (16), but corrected some errors, so 

our Eq. (2) differs from their Eq. (2). Eqs. (1) and (2)were derived by finding all 

four integrals of the motion, writing the distribution function in terms of them, 

and finding the values of the integrals which reduce f to the naive distribution 

function in the limit GA&/a@ + 0. The @(Jz) is necessary since particles which 

come from infinity must have energy greater than 0. That is, it incorporates our 

assumption that there are no bound orbits. 

To include the motion of the Earth we shift the velocity v’ -+ c+V;. Denoting 

the angle of the Earth’s velocity (A’, v’) we then substitute 
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v* -+ v11* = v* + vi + 2vv, cos e,t 

cos x * cos A” = $(U cos x + UC cos A’) 

1 
sin X -+ sin A” = p[v2 sin’ X + vz sin’ A’+ 

Zuu, sin X sin X’(cos v cos Y’ + sin v sin v’)]l/’ 
(3) 

cos Y -+ cos Y” = UN ,i’, A,, ( v sin X cos v + vI sin X’sin v’) 

sinv -+ sinv” = “1, s; ,j,, ( v sin X sin v + v( sin X’sin v’) 

where cos B,,,t = cos X cos A’ + sin X sin X’(cos v cos Y’ f sin v sin v’). We also intro- 

duce dimensionless parameters t = v,h for the Earth’s velocity, p = v,h for the 

Sun’s velocity, w = vh for the DM velocity, and q* = 2GMah*/ae for the escape 

velocity. Using these we find 

f(u, e,b, X,Y) = (2r)-3/2~oh3,-fF”fl(,‘2) (4) 

where 

F” = p2 + d2 + 2p 
d22f + d(q*/2) cake - dzyv cos x + t cos xl) 

d2 + q2/2 - u’(w cos x + t cos A’) ’ 

2’ = w(cosecos X - sinesin Xsinv) + t(cose co9 A’ - SinesinX’sinv’), 

w’ = (w2 f t* + 2wt cos e&,tp*, 

u’ = (w 12 - q2)‘/2, 

(5) 

and where X and v are ae before, only now we are in the rest frame of the Earth. 

Eqs. (4) and (5) reduce to a Maxwellian shifted by V; + V; in the limit q2 -+ 0. 

Note that since q2/2 Z=Z .03 we expect the generic effect of the Sun’s focusing to 

be about 3 percent. 

Using the distribution function f we can evaluate the interaction rate in a 
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detector on Earth as a function of V, X, and Y. 

dR = Mdct - dovrel f(v’ x’v) d3v 
mN mX 

where !+f&/m~ is the number of nuclei of mass rn~ in the detector, v,,r is the 

relative velocity of the DM particle and the nucleus, da is the elastic scattering 

cross section in the lab frame, and f/mx is the number density of DM particles 

of mass mu. Assuming the cross section is isotropic in the center of mass, 

do = (udcos 8*)/2, where 8’ is the CMS scattering angle. The energy transferred 

(energy deposited in the detector) Q is determined by 8’ 

Q = mN++m -cow 
cm, +mx)* ’ 

so with v = v,,r, de = (mx + m~)*odQ/(2m~m~t?) giving the interaction rate 

as a function of the energy deposited 

g = Mdct a(mx + mNj2 h3po 

dQ mN 2mNm; (2r)3/2 7 I 

d3u e-;Fl’ 
’ (8) 

To find the limits of integration, we solve Eq. (7) for v and find cds(mx+ 

mN)/(mXmN) < v < co. However, the no bound orbits constraint implies that 

u > Vmin = -ve cos B,t + I/Y~(COS Sit - 1) + 2GMo/ae, so w > tOmin where 

lu,in = max hc(mx + ‘W) - . 
mxw 

(9) 
In the case of a finite size galaxy halo there is also a maximum velocity urn < 

Vgal % 640km/sec. The exact limit as a function of direction, after falling through 

the Sun’s potential, is quite complicated, but with good accuracy we can approxi- 

mate it as follows. At infinity, in the Sun’s frame, the maximum velocity in direc- 

tion (X,V) is G’cal plus -v’, (the cloud moves with velocity -zlb in the Sun’s frame) 

t? 



so the maximum velocity at infinity is u,, = I- v., cos 6’,, + \lygZm, - u: sin’ BWP(, 

where 0,, is the angle between V; and 6’. If the angle of the DM particle does 

not change much in falling to the Earth, (This is a good approximation since 

ugal > dv). then the maximum velocity at Earth in the Sun’s frame 

is V,., = r& + 2GMo/ae. Finally, in the Earth’s rest frame the maximum 
. .- 

velocity is V,,,,, plus -V;, and we have vrnDZ = -uC cos b’,t + &pijzc, 

where we have neglected the angular change due to subtracting the Earth’s veloc- 

ity. So now, to find the interaction rate in a detector, one picks the time of year, 

which determines 8, 4, A’, and Y’, and integrates Eq. (8) with Wmin < UJ < w,,,,,%, 

0 < A 5 x, and 0 < Y 5 2n. 

III. DIRECT DETECTION 

Two challenges of direct detection schemes are the very low energy thresholds 

needed to detect light DM particles and the discrimination of the very small signal 

from a comparatively large background. One proof that the signal found is due 

to DM particles and not to some background may be the annual modulation 

of the signal due to motion of the Earth relative to the Sun as discussed by 

Drukier, Freese, and Spergel.’ This may even aid in the discrimination of signal 

from background.” In June, the velocities of the Sun and Earth are most closely 

aligned and the cloud impacts the Earth with higher velocity, so a larger signal 

is seen at high Q and a smaller signal at low Q. In December, the velocities are 

most closely anti-aligned, and the reverse is seen. There are, of course, many 

environmental effects which vary on an annual basis (temperature, humidity, 

hours of daylight, power usage, drifting electronics, etc.) and care will have to 

be taken to prevent some subtle effect from mocking the modulation. 

To find the effect of focusing by the Sun on the detection rate and the 

annual modulation, we evaluated the integral Eq. (8) for several values of de- 

posited energy Q at the four different times of year mentioned previously. Table 

I. shows the event rate per unit energy for a 20 GeV DM particle and a Sili- 
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con (mN = 26.1 GeV) detector for the four times of year. The rates with the 

focusing effect (q2 # 0), and without the focusing effect (q’ = 0) are shown, 

as is the percentage difference between them. The signal rates in Table I. are 

dimensionless and to get the rates in events/day/keV/(kg of detector) one mul- 

tiplies by (&t/mjv)(o/2)(mN + mx)‘poh/(mNm$) = 5.6-:$$$$$ 

events/day/keV/kg. Table I. can be used to find the rates for different nuclei 

mass mN and different DM particle mass mx by scaling Q by [mNm$(mSi + 

20Gek’)2]/[msi(20Gek’)2(mN + rn~)~], so for example the Q = 10 keV rate in 

Table I. corresponds to a Q = 65 keV rate for a 5 GeV DM particle and a 

Germanium (mN = 67.6 GeV) detector. 

In comparing the focusing case with the no focusing case we see in most cases 

a O-3% difference in the event rate as expected. An increase this small will be 

completely buried, of course, in the astrophysical and particle physics uncertain- 

ties. lMore interesting is the modulation in signal rate that occurs between the 

different times of year. Table II. shows the modulation effects both with and 

without focusing. The relative velocity modulation discussed by Drukier, et al. 

is seen as the rather large (O(lO%)) . mcrease in rate at high energy in both the 

q2 = 0 and q2 # 0 columns between December and June. Note the decrease 

in rate between these same months at low energy and the existence of one en- 

ergy where no velocity modulation is seen. Also note that between March and 

September there is no relative velocity modulation at any Q since at these times 

the Sun’s and Earth’s velocities are perpendicular. When focusing is included, 

one then does see a roughly 2% increase in signal between September and March 

at low energies. This focusing modulation is caused mainly by the variation in 

DM density as the Earth moves in and out of the Sun’s wake. In March, when 

the Earth is most nearly in the wake the density is 2.2% higher than for the 

q2 = 0 case, while in September it is only .7% higher. The density is 1.1% higher 

in both December and June, explaining why there is no focusing modulation 

between these months. At higher Q the focusing modulation disappears even 
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between March and September. Thus we see that the focusing modulation is 

much smaller and orthogonal to the relative velocity modulation. 

To judge the significance of these modulation effects detailed statistical anal- 

ysis is required, but for illustrative purposes one can consider a low threshold 

device and a heavy DM particle (for example, a 1 keV threshold Silicon device 

and a 20 GeV DM particle ) and divide the events into two bins; one containing 

the 50% of the events with the lowest energies, and the other the 50% with the 

highest energies. There is then an overall 1.3% focusing modulation between 

March and September in the low energy bin and 0.5% modulation in the high 

energy bin. With the same crude binning the relative velocity modulation is 0 

between March and September in both bins, -.S% between June and December 

in the low energy bin and 13% in the high energy bin. More details are shown in 

table II.. 

Given the smallness of the focusing modulation effect, one sees that it would 

require a very large signal rate to be able to see it. This is especially true since 

the effect is largest at low energies and the first generation of detectors will have 

comparatively large thresholds. So, given experimental realities, it is probably 

fair to conclude that this effect is unobservable in the near future, and the effect 

of the Sun’s gravity on direct detection of DM particles can safely be ignored. 

However, as noted by other authors, the relative velocity modulation may be 

significant. 

IV. INDIRECT DETECTION 

The flux of light neutrinos in a proton decay detector from DM particle 

annihilation in the center of the Earth is proportional to the capture rate, so 

here we consider the consequences of Eqs. (4) and (5) on the capture of DM 

particles into the Earth. In the treatments of Krauss, Srednicki, and Wilczek,3 

and of Freese,4 an approximation due to Press and Spergel” was used which 

counts as capturable only those DM particles which, at infinity, have velocities 
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less than about 1.5v,.e, where nese = 11.2 km/set is the escape velocity from 

the surface of the Earth. They noted that particles on average lose less energy 

than this in a single collision, and given the small cross section, if a particle is 

to be captured, it must get below escape velocity in one collision. However, all 

particles from the unbound cloud which reach the Earth’s orbit have velocities 

greater than 42 km/see. There are therefore no particles which meet the above 

criterion, and in this approximation, the capture rate from the cloud is zero! 

(Actually, including the velocity of the Earth means particles coming from behind 

are traveling slower than 42 km/see, but still faster than 11.2 km/set.) However, 

as shown by Gould” , most captures are not made during low velocity collisions, 

but during nearly head on collisions between DM particles and nuclei of nearly 

equal masses, in which case much larger amounts of energy can be transferred. 

Following Gould, the capture rate from the unbound cloud can be written 

& 
C’ = I 4rr2dr$ = j4&./*wn~.*(w) (10) 

0 0 0 

where dC’/dV is the capture rate per unit volume, VJ = (u2 + u,“, + u&) i is the 

velocity of a particle at Earth which had velocity u at infinity, Re is the radius 

of the Earth, f(v) is the distribution function, Eq. (4), integrated over angles 

(X,V), and fl&((~) is the probability per unit time that a particle with velocity 

w will scatter to a velocity less than v,,@ (and thereby be captured). Besides the 

change in f, the form of O,~,(W) changes when the Sun’s gravity is included. 

Using the notation of Ref. (19) we find 

dya, = - cnvz@ (AZ - J-J2 - z2)+42 - Ba - z2) 
AZ (11) 

where A2 = h2pv&J(2p1), Bz = h2&/2, z2 = hav2/2, o is the (assumed 

isotropic) scattering cross section, n is the number density of DM particles, /L = 

10 



mx/m~, and p- = (p--1)/2. This reduces to Gould’s result when B = 0. To find 

the capture rate one substitutes Eq. (ll), integrates Eq. (10) and averages over 

the year. The integrals must be done numerically due to the complicated form of 

f, but from earlier discussion we expect the effect of changing f to be small and 

the big effect to be the theta function in Eq. (11). To get a feel for the effect we 

can compare with Gould’s analytic result for a stationary Sun and Earth and no 

gravity (u, = ~1, = 0). For this purpose we take f(v)dv = (4/&)z2 exp(-z’)dz, 

integrate Eq. (lo), and divide by Gould’s result dC/dV to find 

yc;;; = 8(A2 - B2) 

The biggest effect comes from the theta function which cuts off capture when 

A2 < B2. Using Gould’s estimate of AZ z ~/(400~?) for the Earth’s mantle 

and A2 x p/(290@?) for the Earth’s core and evaluating*’ B2 x .03 we can 

solve the equation p/p: = N to find p = 1 + $(l + m. So capture can 

take place in the mantle only when .56 < mx/mN < 1.78, and in the core only 

when .5 < mx/mN < 2. DM particles with masses outside these ranges are “off 

resonance” and the capture rate for them is zero in this limit. From Eq. (12) one 

sees that exactly “on resonance” when @ = 1 (mx = mN), dC’/dC = 1 so the 

height of the resonance is not changed by the Sun. Also, even at /L = .8 when 

the total capture rate is down by more than a factor of ten, dC’/dC is only .73. 

In the usual picture of detection of DM through its annihilation in the Earth 

or Sun, one finds that the abundances of DM particles and anti- particles build 

up until the annihilation rate equals the capture rate of the minority species (see 

Ref. (6)), so, apart from capture from bound DM particles, the implication of the 

off resonance cutoff for annihilation product detection is that for particles with 

masses not well matched to any common element in the Earth the signal will 

be much suppressed. For most of the mass range O-100 GeV there are common 

elements which can do the capture, as shown by Gould. However, the lightest 
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common element is Oxygen, 
21 and for DM particles below .56mols z 8.3 GeV any 

signal will be heavily suppressed. At the other end of the mass scale, the heaviest 

common element is Iron (perhaps Nickel also should be considered common) and 

so any signal will be heavily suppressed for DM particles heavier than around 93 

GeV. It turns out, however, that DM particles with masses less than 0(12GeV) 

do not participate in the annihilations anyway because they evaporate from the 

Earth too quickly, thus making the cutoff of 8.5 GeV uninteresting. These are, 

of course, only rough estimates. The distribution function Eq. (4) which includes 

the velocities of the Sun and Earth must be properly integrated. As pointed 

out by Gould the effect of the Sun’s motion will be to decrease the capture rate 

since the average kinetic energy of particles striking the Earth will be increased. 

However, off resonance, the motion of the Earth will have the opposite effect, 

since now particles with velocities down to V;,, - V; will exist in the backward 

direction. At this point in this work we received a new preprint by Gould” which 

does the more complete calculation (using an approximation to Eqs. (4)and (5)) 

and we refer the reader to this paper for more details. Our conclusions above for 

the unbound particles are basically correct and the corrections to the event rate 

in a proton decay detector due to the Sun’s gravity are quite small for matched 

DM and nuclei masses. 

V. DENSITY I)F DM BOUND TO THE SUN 

Finally, we make some remarks concerning bound orbits. The phase space 

density Eq. (4) was derived by matching the general solution of the Vlasov equa- 

tion to boundary conditions at infinity. Since bound orbits do not reach to 

infinity, Eq. (4) says nothing about them and their density must be considered 

separately. There are several sources of captured particles which can contribute 

to the bound orbit phase space density. Depending on the details of star for- 

mation a certain number of DM particles must have been captured as the Sun 

formed and may still be in orbits around the Sun. Also, unbound particles can 
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interact gravitationally with the Earth, Jupiter and the other planets and be 

scattered into bound orbits. Of course, already bound particles can escape in the 

same way. Finally, DM particles of interest here can scatter off nuciei in the Sun, 

Earth, and planets and lose enough energy to become bound. 

Now, while in general the phase space density of bound particles is unre- 

stricted, since capture into bound orbits is presumably from the unbound cloud 

of particles described by Eq. (4), we can estimate the density of bound particles 

by considering the processes listed above. First note that the existence of 3-body 

gravitational interactions which both capture and free DM particles implies that 

an equilibrium value fee is possible (where the rate at which free particles are 

captured into bound orbits is equal to rate at which bound particles are freed). 

For isotropic scattering we expect fee to be nearly equal to the low energy limit 

off (Eq. (4)). This can be seen by following a line of argument due to Gould.23 

Consider the gravitational scattering of a DM particle by the Earth. As discussed 

in Sec. II unbound particles are those which satisfy 

d2 =~2+tZ-q~+2wtcose,t~0, (13) 

and bound particles satisfy uf2 < 0, where W, t, and q are respectively the 

dimensionless DM, Earth, and escape from Earth orbit velocities and cos B,t is 

the angle between w’ and K For a given DM velocity W, we see that in some 

directions there are only bound particles and in others only unbound. In the 

limit U” -+ 0, f + feq s (2x)-3/2h3poexp(-p2/2), is independent of velocity 

and angles and so all directions which represent unbound particles are equally 

populated for a given W. Scattering by the Earth will not change the magnitude of 

the velocity, but the angle will change and the particle may afterward be bound. 

Thus, if the scattering rate is high enough, the directions which represent bound 

particles will be increasingly populated, up to the point where fbo,,& e fcq, when 

scattering out of bound angles will equal scattering into bound angles. Likewise, 
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if fbaund for some UJ is initially larger than fell, we expect the bound directions 

to depopulate until fb,,,,,,d = fcp again. 

With this in mind we also define an equilibrium density 

V-i,, 

P eq = J d%feq = $(1-2-3/y ; 

0 

p~~2)3’2e-P’/2 .% l.lx10-3po, (14) 

where the v,,,in defined just before Eq. (9) is now the maximum velocity and all 

other symbols were defined in Sec. II. This is the density of bound DM particles 

at the Earth orbit which we would expect if an equilibrium phase space density 

existed. Note that the above equilibrating process does not apply for particles 

with u such that w + t < Q, since in this case, no change of angle can change 

the sign of u”. So particles with v < 12.4 km/set are not expected to be in 

equilibrium via this process. In addition, for these particles the effect of the 

Earth’s gravity (vCa = 11.2 km/set) is important; however, they do contribute 

less than 3% of the total to pen. 

Before considering whether fell is reached in the age of the Earth and how 

much other capture processes contribute, we want to see how big an effect bound 

particles can have on direct and indirect DM detection. For direct detection 

we consider a bound particle phase space density fbaUd = efCs where c is some 

enhancement (or depletion) factor. The event rate in a cryogenic detector can 

be evaluated using Eq. (6) 

dRb i”tict dmx + mu)’ -=- 
dQ mN 2mNm; 

4,Gw~:~ -G/3 - &nin), (15) 

where vq,;” is defined just after Eq. (8). For mx = 20 GeV and a Silicon detector 

we can compare this bound particle event rate to the rate from unbound particles. 

As expected, the rate from bound particles is appreciable only at very small Q. 

For example, for an enhancement of e = 1000, the ratio of bound to unbound 
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event rates is 15 at Q = 10 eV, 10 at Q = 50 eV, 6 at Q = 100 eV, 1 at Q = 150 

eV, and zero at Q above 250 eV. We see that it would take a very substantial 

initial enhancement for the bound DM particle event rate to be significant. If 

such an enhancement did exist, however, it could be very interesting. With an 

enhancement of 106, for example, detectors would see a huge jump in signal at 

energies less than 100 eV and a smaller detector with lower energy threshold 

would be worth pursuing. 

For indirect detection we need to know the capture rate into the body of the 

Earth from the cloud of bound DM particles. We first note that if a substantial 

density of bound particles exists, the sharp cutoff in capture rate found above for 

unbound particles with mismatched masses will be compensated for by capture 

from the bound cloud, since now particles with velocities all the way down to 

v = 0 will exist in the backward direction. In his new paper Gould” calculated 

the distribution of bound particles arising from gravitational scattering and weak 

interaction scattering and evaluated the resulting capture rate. He finds the 

largest contribution comes from bound particles in the range 0 < v < 12.4 

km/set and, except right on resonance, is roughly equal to the capture rate from 

the unbound cloud. The compensating effect mentioned above is clearly seen in 

his Fig. 2. Thus, the density of bound particles is important for the indirect 

detection of DM particles and we refer the reader to Ref. 22 for more details. 

The problem of whether fCp is reached by gravitational scattering in the 

age of the Earth is also studied in some detail by Gould in his new paper. 22 

His investigations are continuing23 but I can oversimplify some of his results as 

follows. After a gravitational scatter, a newly bound particle leaves the Earth 

orbit with a speed w and with spherical angles with respect to the Earth’s velocity 

(6,+). Under several assumptions, Gould showed these same values of w, 8, and 

4 will apply the next time this particle comes near the Earth. The new scatter 

will now change 0 and 4 but not w. The time scale to populate the directions 

which represent bound orbits is roughly the time scale to “random walk” into 
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all parts of the bound “cone”. Gould estimates the angular “random walk” of a 

bound particle in half the Earth lifetime to be 

A(w) Z=S 1.5 ; 0 512 
radians, 

where, as before, t is the dimensionless Earth velocity. The half angle Q of the 

cone inside which particles are unbound is found from Eq. (13) 

a = cos-l t2 - d 
( > 2tw ’ (17) 

where we have used q2 = 2t2. We see from Eq. (16) that DM particles with low w 

can sample the whole sphere and reach equilibrium in the age of the Earth. For 

particles with w = t, A N 1.5 radians and ip = x/2 and so here we just barely 

reach all of the sphere. For u = wh u 42 km/set, we have A = .65 and @ = 1.9 

and so much of the sphere is unreachable and we expect only partial progress 

toward equilibrium. As the velocity increases, the random walk angle decreases, 

but so does the size of the bound cone. 

To be slightly more quantitative in these order of magnitude estimates we turn 

the problem around and ask how much of a large initial enhancement c can survive 

over the age of the Earth. In the velocity range 0 < t) < 12.4 km/set, @ = 0, 

there is no unbound cone, and given the assumptions in Ref. 22, an enhancement 

can survive until today undiminished. For v > 12.4 km/set a certain fraction 

s of the particles will escape, and we define the angle 0 = r - Q - A as the 

half angle of the “survival cone”; that is, bound particles which start within this 

cone will not, for the most part, under our assumptions, random walk into the 

unbound cone over the age of the Earth. The fraction of bound particles which 

survive can now be very roughly estimated aa the ratio of the solid angle of the 
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survival cone to the solid angle of the bound cone 

a’- 
1+ cos(Q + A) 

lfCOS@ . (18) 

We find s = 2 x 10e3 for v = 30 km/set, s c- .l for 35 km/set, s = .3 for 45 

km/set, and s peaks at around .4 for v = 55 to 65 km/set. For higher velocities 

s decreases, dropping to .17 at v = 70 km/set as the size of the bound orbit 

cone shrinks to zero at 72 km/set. From these numbers we see that in the range 

12.4 < u < 30 km/set enhancements do not survive, and f x fee. In the range 

30 < v < 40 km/set the initial density drops by one to two orders of magnitude, 

but in the range 40 < v < 70 km/set any initial enhancement can be preserved. 

Our analysis is only order of magnitude and the interested reader is referred to 

an upcoming paper by Gould for a more exact treatment. 

In the range 67 to 72 km/set there is, however, one more effect which should 

be considered.23 DM particles with these velocities at Earth orbit can reach to 

Jupiter’s orbit, and since Jupiter is a more efficient scatterer than the Earth, 

one can guess that all such particles will be in equilibrium. Saturn will have 

a similar effect, but since it is further out will not change the above result. 

Summarizing the results so far, we see a possible enhancement in the velocity 

ranges 0 < v < 12.4 km/set and 40 < v < 67 km/see, and f z fee in the rest of 

the range from 0 to 72 km/set. 

We now turn to an investigation of the initial phase space density; that is, the 

density that existed just after the Sun formed. As the prom-solar cloud of baryons 

collapsed, DM particles passing through the cloud could interact weakly with the 

nuclei, or gravitationally with the changing potential and lose enough energy to 

be captured. Also, if there were DM particles bound to the proto-solar cloud, 

then the density of these particles could be increased during the collapse. For 

weak interactions with the baryonic cloud very few particles could be captured, 

as can be seen from the capture rate formula in Ref. 19. The relatively quick 
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time for solar formation ( 5 lo7 years), and the fact that the capture rate is (at 

best) proportional to the escape velocity from the cloud (ZGMah’/Ri), coupled 

to the low initial density of DM particles means that nowhere near pcq in DM 

particles could be captured in this way. 

Gravitational capture is at first sight more promising. In 1978 Steigman, 

Sarazin, Quintana, and Faulknerz4 calculated the number of weakly interacting 

particles captured inside a sphere of final radius Rf during the slow collapse of 

a uniform spherical cloud of baryons with initial radius Ri. They defined a free 

fall time tf = R3/a (approximately the time for a particle at rest to fall 

from r = R to r = 0) and assumed that the ratio q = t,/tc was constant in time 

and space, where t, is the collapse time (the time for the cloud to collapse from 

r = R to r = R,). Under the assumption q << 1 they claimed 

312 
g/2 (19) 

where Nf = :nn,RT is the number of DM particles inside radius R, at the end, 

Ni = $noR~ is the number of DM particles inside the precollapse sphere, and 

n = p/m~. This would mean a density enhancement today at the Earth orbit 

(Rf = a@) of 

Taking a@ = 1.5 x 1~3’~ cm, Ri x 10” cm, and 7 = k this would be an enhance- 

ment of about 6 RZ 15000! However, we believe that Eq. (19) is in error. We first 

use a general argument due to Stebbins 25 to show that in any star formation 

process we expect pbomd ~5 p.geP’~2, where ip2 PZ 1, and then consider in detail 

the solar formation model of Steigman, et 01.. 

Let the bound particle phase space density be &,,,d(< C) and consider the 

particles in any small phase space volume. Follow these particles back in time 



to before the sun formed when they were unbound. Since along orbits df/dt = 0 

by Liouville’s Theorem, we have fbom,j = f,&,c,und. Now, f,,,,b,.,und is jUSt a 

Maxwellian shifted by the solar velocity and has (2r)-3/2h3po as its maximum, 

so f&,uad 5 (2a)-3/2h3po = fr&“/2. Integrating fb,,,,,,d Over all bound VelOCitieS 

we see that Pbound I Pep e?‘12. We can say more if we assume that the collapse 

was slow. Then only particles which were moving slowly with respect to the Sun 

(Id’” small) could have been captured. This is a reasonable assumption since the 

dispersion velocity of the halo is - 220 km/see and the escape velocity is - 42 

km/see. In this limit f,,+,,,,,d z fen and we predict fbound ~5 feq and &,n,d = pep 

in disagreement with Eq. (20). To find the source of the disagreement we review 

the treatment of Ref. 24. 

Steigman, et al. begin by finding the energy lost by a DM particle of energy 

E and angular momentum L transversing the collapsing cloud 

AEx- GMo 
y+X’), (21) 

where R is the radius of the cloud, g is a monotonically decreasing function of X2 

given in Ref. 24 (g(0) = 1.7), and where X = L/L,., = L/d2R2E + 2GMaR x 

L/J??iZ&R is the dimensionless angular momentum. The t7 < 1 limit is nec- 

essary since the orbits were assumed to be those in a steady potential. We can 

drop terms of order ER/GMa since only DM particles with energies much less 

than GMa/R are captured. Also, since only particles which pass through the 

collapsing sphere can be captured, only particles with X < 1 are of interest. The 

capture condition is lA.El > IE], which by taking the inverse of g(X2) can be 

written X2 < Xz, where Xt is the maximum value of X for which the capture 

condition holds. Using Fig. 1 of Ref. 24, X:(y) can be well approximated by 

A: z 1 - &, where y = ER/(vGMa) and 0 5 y 5 1.7. The condition on Xl 

translates to a condition on the impact parameter b of DM particles at infinity 

b < b, where X2 = Eb2/(GMaR). Using the cross section for capture nbf and 
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integrating the velocity times this cross section over the phase space density at 

infinity, one derives the capture rate (Eq. 12 of Ref. 24). 

dNT - m .85(8r)‘/2no(GMo)2h3q, 
dt (22) 

where our h is the inverse of the Av used in Ref. 24 and no = po/mX. The 

total number of DM particles captured is found by integrating Eq. (22) over the 

total collapse time tT = (Rf’“-Rii2)/(q&?7&) x Rf’2/(qm, whichsince 

dNT/dt is independent of R (and therefore t) is easily found 

NT ti Ni (23) 

which agrees with Eq. 13 of Ref. 24, apart from a factor of 2. 

Steigman, et al. then point out that most of these captured particles are 

weakly bound and spend most of their time outside of the region of interest 

(r 5 Q). The maximum IEl possible for a newly captured DM particle is 

IAEj which is smaller than GM@/R since n << 1 and g < 1.7. The time for 

a captured particle to orbit and pass through the contracting region again is 

tretum = TTR~/~/($/~~~/~,,TA’Z$ which is greater than the collapse time t, = 

tf/q, so by the time the particle returns, the Sun has collapsed and the particle 

will therefore be unable to lose any more energy. Now, we can overestimate 

the fraction of particles inside ae by saying that all captured particles have 

energy jAEl and that they are all on radial orbits. Then the fraction is the 

ratio of the time spent inside ae to the orbit time. For R > a(g this ratio is 

I sz .3 (aeqg/R)3’2 while for R < ngae it is I x 1. (In the latter case the 

particles stay inside a@ all the time.) The total number of particles inside a@ can 

be found by integration Nf = f$ j,” Idt. Now using R312 = RfJ2 - qta 
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we find 

(24) 

and p, 2 2.5peqq312 ln(Ri/ae), where we put g equal to its average value for 

simplicity. This is smaller than Eq. (20) by a factor of - 7500 and in rough 

agreement with the results of the general argument. 

We must also consider the final collapse from a@ to Ra sz 7 x 10” cm, where 

we can again apply Eq. (23) to find the number of particles captured in the 

final collapse NC = Ni(GMah2/aa)3/2, where now Ni % $rneo~. The fraction 

within a@ is I % (~ae/R)~/~ for nae, 5 R 5 acB and I c 1 for Ra 5 R 2 ~a,. 

Integrating over the collapse time we find the density due to final collapse pc x 

2~~/~p~~(.7 - Inn), again in rough agreement with the general argument. In the 

above calculation, particles starting with negative energy were left out, which 

may explain the n3/2 factor. 

To this end, we lastly consider the fate of those DM particles already bound 

to the precollapse sphere of radius &. To make an estimate we can consider 

DM particles which orbit completely inside the sphere and which are on circular 

orbits. Then, for slow collapse, the adiabatic invariant rM(r) can be used to 

calculate the density enhancement caused by the collapse of the sphere, 
12 

where 

here M(r) is the total mass inside radius r. Defining the initial ratio of DM to 

total matter as fx and considering a DM particle with initial radius ri and final 

radius T, we have 

riM(ri) = r(Mx(r) + ME(~)) 

where Mx(r) and MB(~) are respectively the DM and baryonic masses inside r. 

NOW MB(ri) = Marz/Rf, MB(T) x MD, since by the end all baryons are within 

the very small radius of the Sun, and Mx(r) = Mx(ri)y since DM orbits do not 
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cross and we find 

4 

’ : fXr; + (r;- fx)R,” c=s 

4 

(&)Rf' 

So the density will be enhanced 

r?dr. 
PXf = PXi$$ e 

pxi(l- f~)~‘~ 

4 
% lO*pXij (25) 

where in the last step we took Ri 2: 10” cm and r N a$. Eq. (25) is in agreement 

with the treatment of Ref. 24. But what is the density of initially bound DM 

particles pxi? If it was the equilibrium density for the precollapse sphere, pxi x 

Peq(ae+lRi) 3’2 then we would have 

px, o pcq (1 - fx)3’4 
( > 
&i 314 

4 a+3 
= 2OOPeq, (26) 

a moderate enhancement which still must be multiplied by a factor less than unity 

to take into account the fact that not all orbits are circular and inside Ri. Here 

there is no factor of n312, however, and given the crudeness of the approximations, 

we consider the above results to be in agreement with the general argument result 

that pa omnd = Prq. 

VI. CONCLUSIONS 

In this paper we considered the effect the Sun’s gravitational potential has 

on the distribution of cold dark matter particles near Earth. The distributions 

for particles with positive energy (unbound) and negative energy (bound) were 

considered separately. The phase space density for unbound particles is given in 

Eq. (4); the density for bound particles was considered only semi-quantitatively. 

Using the unbound phase space density we then estimated the effect on direct 

and indirect detection of DM. For direct detection we found a new 0(1 - 2%) 
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annual modulation of the signal rate in a cryogenic detector orthogonal to the 

larger relative velocity modulation. This effect is probably unobservable in the 

near future due to its small size and the low energy threshold needed to see 

it. For indirect detection we found that positive energy DM particles cannot be 

captured by the Earth if their mass is not well matched to a common nuclei in 

the Earth. This effect is probably not important either since for most of the mass 

range 12-90 GeV matching does occur and it is, in addition, compensated by the 

capture of DM particles from bound orbits. 

The phase space density of negative energy particles is more difficult to es- 

timate, but we reviewed some recent work by Gould and showed that for DM 

velocities in the range 12.4 to 40 km/see we expect to reach an equilibrium den- 

sity equal to the low energy limit of the unbound phase space density. This is due 

to 3-body gravitational, scattering by the Earth. Including Jupiter equilibrates 

the range 67-72 km/see as well. Under several assumptions, the phase space 

density in the ranges 0 < v < 12.4 km/see and 40 < v < 67 km/set does not 

equilibrate and we presumably have today roughly whatever density existed just 

after the Sun formed. In any case, using both a general argument and a crude 

model of solar formation we estimated the initial density due to solar collapse as 

being around the equilibrium density. This is in conflict with earlier estimates 

which suggested that a large enhancement was possible. A very large enhance- 

ment over equilibrium density would be interesting since it would mean large 

signal rates in cryogenic detectors at very low thresholds and would significantly 

alter the number of DM particles now in the body of the Earth. For equilibrium 

density, however, the effect in cryogenic detectors is negligible, and the capture 

rate into the Earth is of the same order of magnitude as other orbit capture 

mechanisms. ” Overall we expect the bound DM particle distribution to be at 

or near the equilibrium value. Perhaps future generations of DM detectors will 

measure the energy spectrum of DM particles, give us real information about 

star formation (bound orbits) and galaxy formation (unbound orbits), and allow 



us to test these predictions. 
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Table Caption 

Event rates per unit energy in a Silicon detector for a 20 GeV DM particle 
at various times of year and at various values of energy deposited Q. The q2 # 0 
column includes the focusing effect of the Sun, while the q* = 0 column does 
not. See the text for factors to convert these rates into events/day/keV/kg and 
to scale the Q values for other nuclei and DM particle masses. The last column 
is the percentage difference between the rate columns. 

TABLE I 

Q&V) Rate($ # 0) Rate($ = 0) % difference 

September .1 .566 .569 -. 5 

1 .530 .527 .4 

5 .370 .366 1.1 
10 .225 .222 1.5 
20 .074 ,073 1.9 

March .l .579 ,569 1.8 
1 .540 .527 2.4 
5 .374 .368 2.2 
10 .226 .222 2.2 
20 .074 .073 2.3 

December .l .589 .588 .2 
1 .547 .541 1.1 
5 .369 .364 1.4 

10 .216 .212 1.7 
20 .067 .066 2.0 

June .1 .553 .551 .4 
1 .519 .514 1.0 
5 ,373 .368 1.3 

10 .234 .230 1.6 
20 .081 .OBO 1.9 



Table Caption 

Modulation of signal rates in a Silicon detector for a 20 GeV DM particle at 
various times of year and at various values of deposited energy Q. The percentage 
change in event rate between the labeled months is shown. The q* # 0 columns 
include the focusing effect of the Sun, while the q2 = 0 columns do not. 

Q&V) 

.l 
1 
2 
3 
4 
5 

7.5 
10 
15 
20 
30 

Sep/Mar Dec/Jun Sep/Mar Dec/Jun 

(n2 # 0) (2 # 0) (n2 = 0) (2 = 0) 
2.2 -6.6 0.0 -6.8 
1.9 -5.3 0.0 -5.2 
1.6 -3.6 0.0 -3.5 
1.4 -2.0 0.0 -1.9 
1.2 -0.4 0.0 -0.3 
1.1 1.0 0.0 1.1 
0.9 4.4 0.0 4.5 
0.7 7.5 0.0 7.6 
0.5 12.9 0.0 13.0 
0.3 17.6 0.0 17.6 
0.2 25.3 0.0 25.4 

TABLE II 



Figure Caption 

The position and velocity of the Earth (CB) with respect to the Sun (0) at 

various times of year. The Earth’s and Sun’s velocities are most closely aligned 

in June; the Earth is most closely in the “wake” of the Sun in March. (I is the 

angle between the solar velocity and the plane of the ecliptic. Also shown is the 

coordinate system used. The dark matter velocity 17 at Earth, in the Earth rest 

frame, is given in spherical coordinates by (u, X, Y), where X is the angle between 

C and the .z axis, and v is the azimuthal angle. 
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